CONDITIONS OF TOROIDAL EQUILIBRIUM
OF A MOVING PLASMA

A. G. Oleinik UDC 533.9

Necessary conditions for stationary plasma flow in a magnetic field of toroidal geometry
are derived in a magnetohydrodynamic approximation.

It is well known [1] that toroidal equilibrium of a quiescent plasma requires that the azimuthal compo-
nent H, of the magnetic field corresponding to the angle of the short circuit of the torus be nonzero,

Hy #0. ' (1)

One possible method of studying Eq. (1) is to find the stationary solutions of magnetic hydrodynamics
equations for a stationary medium to a first approximation relative to the torus parameter o =a /R (¢ and R
are the radii of the short and long circuits of the torus), which may be considered small. The resulting solu-
tions have meaning only when Eq. (1) holds, since Hy, (more precisely, Hyw, which corresponds to the zeroth
approximation a =0) occurs in the denominator of the resulting expressions. Conditions of toroidal equilibrium
for a moving medium may be analogously obtained.

In the magnetohydrodynamic approximation the equations describing steady mation have the form

1
P(¥V)V+vp— - (rotH, H] = 0; rot[vH] = 0;
divpy =0; divlH = 0; (vy)S =0, @)

where p, p, v, and $ are density, pressure, velocity, and entropy of the plasma, and H is magnetic field
strength.

Let us use a toroidal coordinate system{ r, W, 0} , where r is the distance to the circular axis of the
toroid and 6 and w are the angles of the large (about the toroid axis) and small circuits (about the circular
axis), We introduce the dimensionless variable ¢ =r/R, writing the system (2) in the form
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Here v is the adiabatic index.

If we assume that the parameter « is small, we can represent the desired variables f; in the form
fj =i +44, where fj corresponds to the zeroth and fj to the first, approximation relative to @, Let us as-
sume that no dependence on § and w exists in the zeroth approximation,
9o _ 9

7 = e — O

Then the system (3) reduces, in the zeroth approximation with respect to «, to the single equation
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We find the desired variables f;; using the system of eguations (5)~(12), bearing in mind that foi sat-
isfies Eq. (4). We express the remaining unknowns in terms of Hyy and H*p = f H,pdw for this purpose by
means of Eqs. (6)-(12) and, substituting the unknowns in Eqs. (5), we obtain an equation to find Hip.

We first express the unknowns in Egs. (7) and (8)~(12) in terms of py, H,r, and H*,. We find that
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Integrating Eq; (6), over w and substituting in it Eqs. (13)-(18), we find p, in terms of H*p,
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We obtain an equation for finding H¥%y by substituting Eq. (19) in Eqs. (13)-(18), subsequently sub-
stituting Eqgs. (13)~(19} in Egs. (5), since HYr=y(§) cos w (i.e., Hy,, ==y sin «)
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We find, by solving Eq. (20), that
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where C, and C, are constants of integration,

Let us consider the singular points of these solutions, at which the unknowns f;; become infinite.
Since such infinities indicate that the solution of the initial system of equations cannot be solved, we elim-
inate these singular points, obtaining necessary conditions for stationary flow of a plasma in a toroid.

Equations (21) imply that A can never be zero, so that
vie # cho (1 + ca/cd) (22)
and Eq. (19) implies that £# 0, so that
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Equations (22) and (23) are necessary conditions for the possibility of stationary plasma flow in a
toroid to a magnetohydrodynamic approximation.

If the denominators of the right sides of Eqs. (17) and (18) vanish when v, =cp,, this will not lead
to the appearance of infinities, since the vanishing factors are eliminated when p, from Eq. (19) is sub-

stituted in these equations,
According to Eq. (19), when (H}y,—47 pgv3,)— 0,
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The condition (24) in the cylindrical case (x =0) takes the form, according to Eq. (13),
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which in this case (v =0, 9p, /5t # 0) is equivalent to the requirement that pressure along the projection of
the streamline on a plane perpendicular to the cylinder axis be constant.
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INDUCED FLUCTUATIONS OF THE INTENSITY
OF RADIATION EXCITED BY AN ELECTRON BEAM
IN A FLOW OF RAREFIED GAS WITH CLUSTERS

N. I. Kislyakov, 1. A, Piven', UDC 533.6.011.8
A. K. Rebrov, and G. A.Khramov

The presence of fluctuations in the intensity of radiation excited by electrons in a jet core
was discovered using an electron beam and by studying the interaction of two low-density
supersonic CO, flows. The nature of the variation of the frequency and amplitude of the
surges within the jet core as well as the region within which the surges exist depend on the
parameters of the flow retardation.

The use of an electron beam for diagnostics of flows of rarefied gas has become widespread in experi-
mental gasdynamic studies because of the fact that these methods result in quantitative data on gas density and
the concentration of components and their energy states both in the quiescent and in the moving gas 1, 2].
Measurements were based on the ability to establish a unique relation between the intensity and nature of the
spectrum excited by the electron beam, and the state of the gas, In this work, low-frequency radiation fluctua-

tions in the zone of an electron beam used for probing interacting flows of rarefied gas containing clusters are
studied.

This phenomenon has been studied for the interaction of two CO, slipstreams in a vacuum chamber. A
gas-driven source with a supersonic nozzle (critical cross-section diameter d, =0.58 mm, section diameter
d=1.22 mm) or with a sonic nozzle (d+ =0.33 mm) was mounted in the flow field at a distance of 1120 mm be-
hind the nozzle with section diameter 100 mm and geometric Mach number M;~ 8, The dimensions of the
source were chosen to be 10 times several mean free paths, in order that the gas of the external slipstream
streamlining the jet not be substantially influenced. The parameters of these flow conditions are indicated in
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